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We consider graph-based approaches for semi-supervised learning on 

large datasets. Known techniques to improve efficiency typically involve 

an approximation of the graph regularization objective, however:

• The graph is assumed to be known or constructed with heuristic 

hyperparameter values

• They do not provide a principled approximation guarantee for 

learning over the full unlabeled dataset. 

We propose algorithms that overcome both limitations. 

• We learn the graph 𝐺 𝜎  via algorithms that can exhaustively search a 

continuous parameter space

• We give an online learning framework to learn the graph efficiently 

online

• We speedup our algorithm by using the Conjugate Gradient method as 

an approximate matrix inversion method

• We give guarantees of our algorithm given approximate feedback

• We observe significant (~10-100x) speedup over prior work

 

Introduction

• We show a formal separation in the learning-theoretic complexity of 

sparse and dense graph families.

• We show how to approximately learn the best graphs from the sparse 

families efficiently using the conjugate gradient method. 

• We provide an online learning framework that can be used to learn the 

graph efficiently online with sub-linear regret, under mild smoothness 

assumptions

• We implement our approach and demonstrate significant (∼10-100x) 

speedups over prior work. 

Results/Discussion
Algorithm 1: Approximate Continuous exp3-set (𝝀)

Figure 4. Loss intervals calculated with approximate. Black intervals are estimated constant loss. 

(a) Gradient Descent Only (b) Newton’s Method Only (c) Our Method

Figure 3. An instance where finding local minima of 𝑔𝑢 𝜎 = 𝑓𝑢 𝜎 − 12 2
 is challenging.

Our method (taking the min of Gradient Descent/Newton’s method steps) finds the minima. 

Graph Learning Guarantees

Complexity bound for Algorithm 2. Given an algorithm for computing 𝜖-

approximate soft labels and gradients for the efficient semi-supervised 

learning algorithm of Delalleau et al. [2005], Algorithm 2 computes (𝜖, 𝜖)-

approximate semi-bandit feedback for loss 𝑙(𝜎) in time𝑂 𝐸𝐺෩𝑈 𝑛 𝜅 ℒ𝐴 log( 𝜆 𝐿 + ෩𝑈 Δ𝜖𝜎𝑚𝑖𝑛𝜆𝑚𝑖𝑛 ℒ𝐴 ) log log 1𝜖
Here 𝐸𝐺෩𝑈  represents edges w.r.t. graph of a small subset of unlabeled 

nodes ෩𝑈, ℒ𝐴 represents grounded graph Laplacian of graph 𝐴 used to 

determine labels for ෩𝑈, and Δ represents the size of the interval for 

parameter 𝜎. Notice that this bound is linear w.r.t. 𝑛, assuming a well 

conditioned graph.

(a) Subset of FashionMNIST

      k=6, 30 |L|=30, |U|=300

(b) Subset of USPS

       k=6, |L|=10, | ෩𝑈|=100, |U|=1000

Algorithm 2: Approximate Feedback Set (𝝐, 𝜼)

Figure 1. A visual of the semi-supervised learning setup. We learn graph 𝐺(𝜎) by finding optimal 𝜎 Figure 2. A depiction of a (𝝐, 𝜸)-approximate semi-bandit feedback with system size 3.

Dispersion. Consider a parameter space 𝒞, a sequence of random loss 

functions 𝑙1, … , 𝑙𝑇:  𝒞 → [0,1], and a constant 𝛽. We consider this random 

sequence 𝛽-dispersed for Lipschitz constant 𝐿 if, for all 𝜖 ≥ 𝑇−𝛽 , each 

pair of points at distance 𝜖 in 𝒞 is not 𝐿-Lipschitz for at most ෨𝑂 𝜖T  

functions in expectation.

An online optimization problem with loss functions 𝑙1 , 𝑙2 , … is said to 

have (𝝐, 𝜸)-approximate semi-bandit feedback with system size 𝑀 if 

there is a partition ሚ𝐴𝑡(1), … ሚ𝐴𝑡(𝑚)
of the parameter space 𝒫 ⊂ ℝ𝑑, such 

that if the learner plays point 𝜌𝑡 ∈ ሚ𝐴𝑡(𝑖)
, she observes approximate 

feedback set ሚ𝐴𝑡(𝑖)
 and approximate loss ሚ𝑙𝑡(𝜌), which is within 𝛾 of the 

loss for all 𝜌𝑡 ∈ ሚ𝐴𝑡𝑖
  except for some subset of ሚ𝐴𝑡𝑖

 with volume at most 𝜖.

Online Learning Setup

Online Learning Guarantees

Regret bound for Algorithm 1. Suppose 𝑙1, … , 𝑙𝑇:  𝒞 → 0,1  is a sequence of 

loss functions that is 𝛽-dispersed, and the domain 𝒞 ⊂  ℝ𝑑 is contained in a 

ball of radius 𝑅. Algorithm 1 achieves expected regret ෨𝑂 𝑑𝑀𝑇 log 𝑅𝑇 + 𝑇1−min 𝛽,𝛽′  
 with access to (𝜖, 𝛾)-approximate semi-bandit feedback with system size 𝑀, 

provided 𝛾 ≤ volume 𝔅 𝑇−𝛽 𝑇−𝛽, where 𝔅(𝑟) is a 𝑑-ball of radius 𝑟. 

Gaussian nearest neighbors. Consider a data space 𝒳 and distance function 𝑑: 𝒳 × 𝒳 → ℝ≥0 . Further, let 𝑁′𝑘 denote a subset of 𝒳 × 𝒳, where 𝑢, 𝑣 ∈𝑁′𝑘  indicates 𝑢 is a 𝑘-nearest neighbor to 𝑣 AND 𝑣 is a 𝑘 nearest neighbor 

to 𝑢 under metric 𝑑(⋅,⋅). Finally, construct graph 𝐺(𝑘, 𝜎) with edge weights: 𝑤 𝑢, 𝑣 = 𝑒−𝑑(𝑢,𝑣)2𝜎2  𝕀 𝑢, 𝑣 ∈ 𝑁′𝑘  
for all instances 𝑢, 𝑣 ∈ 𝒳. We let ℋ𝑘,𝜎 denote a set of functions that take in 

some 𝑘 ∈ 𝐾 , 𝜎 ∈ ℝ and output loss w.r.t. label predictions on graph 𝐺(𝑘, 𝜎).

Pseudo-dimension of ℋ𝑘,𝜎 . We show that the pseudo-dimension of ℋ𝑘,𝜎 is 𝑂(𝐾 +  log 𝑛), where 𝑛 denotes the number of nodes in the graph, and the 

labeling algorithm is the mincut approach of Blum and Chawla [2001].

Graph Learning Setup
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