Problem: Consider we have a relative depth map $f:[0, h] \times[0, w] \rightarrow \mathbb{R}$, as well as n points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ with absolute depth values d_{1}, \ldots, d_{n}. Letting

$$
d_{r e l}=\left[f\left(a_{1}, b_{1}\right), f\left(a_{2}, b_{2}\right), \ldots, f\left(a_{n}, b_{n}\right)\right]
$$

, the goal is to find some scaling factor $c \in \mathbb{R}$ to minimize the distance between vectors

$$
d_{\text {rel,scal }}=\left[c f\left(a_{1}, b_{1}\right), c f\left(a_{2}, b_{2}\right), \ldots, c f\left(a_{n}, b_{n}\right)\right]
$$

and

$$
d_{a b s}=\left[d_{1}, d_{2}, \ldots, d_{n}\right]
$$

The first is the scaled depth predictions of the relative depth map and the second is the absolute depth values. We find the min via differentiation:

$$
\begin{aligned}
& \min _{c \in \mathbb{R}}\left\|d_{r e l, s c a l}-d_{a b s}\right\|_{2} \\
= & \min _{c \in \mathbb{R}}\left\|d_{r e l, s c a l}-d_{a b s}\right\|_{2}^{2} \\
= & \min _{c \in \mathbb{R}} \sum_{i \in[n]}\left(c f\left(a_{i}, b_{i}\right)-d_{i}\right)^{2}
\end{aligned}
$$

Now we differentiate w.r.t. c to find the min value

$$
\begin{aligned}
& \frac{\partial f}{\partial c}=0 \\
\Longleftrightarrow & \sum_{i \in[n]} 2\left(c_{o p t} f\left(a_{i}, b_{i}\right)-d_{i}\right) f\left(a_{i}, b_{i}\right)=0 \\
\Longleftrightarrow & \sum_{i \in[n]} 2 d_{i} f\left(a_{i}, b_{i}\right)=\sum_{i \in[n]} 2 c_{o p t} f\left(a_{i}, b_{i}\right)^{2}
\end{aligned}
$$

Note that all coefficients of $c_{\text {opt }}$ are nonnegative,
so the second derivative is nonegative and thus we have a minima

$$
\begin{aligned}
& \Longleftrightarrow \frac{\sum_{i \in[n]} d_{i} f\left(a_{i}, b_{i}\right)}{\sum_{i \in[n]} f\left(a_{i}, b_{i}\right)^{2}}=c_{o p t} \\
& \Longleftrightarrow \frac{d_{\text {abs }} \cdot d_{\text {rel }}}{\left\|d_{\text {rel }}\right\|_{2}^{2}}=c_{\text {opt }}
\end{aligned}
$$

We have found that the optimal value of c is the dot product of the two original vectors over the squared magnitude of the relative depth vector. For the interested reader, this is the minimum distance between point $d_{a b s}$ and a line passing through the origin and $d_{r e l}$ in \mathbb{R}^{n} (here this line is parameterized by the scaling constant c)

