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Abstract

In this project we attempt to expand the task of
visual storytelling by producing both story cap-
tions and images for the remainder of a story
just given one initial frame (image and caption).
Much previous work on this task focus on gen-
erating story captions from images or story im-
ages from captions. However, we present a
pipeline for doing both simultaneously while
ensuring that we have coherence between the
story captions, coherence between the images,
and alignment between the text and images.
The key insight we make in our approach is
that story captions are poor inputs to diffusion
models so we generate both story captions as
well as descriptive captions, the latter of which
is used as input in image generation.

1 Introduction and Problem Definition
(1-1.25 pages)

Visual storytelling is the task of producing a nar-
rative from a photosteam (Wang et al., 2018) . In
this work, we aim to extend this to what we call
the task of story generation. We aim to produce
both the story captions and story images of a story
given just an initial text and caption. The story
images and caption should maintain the same style
and themes present in the initial frame. There-
fore, in order to maintain coherence between the
captions, coherence between the images, and align-
ment amongst the text and images, we create a
multimodal pipeline that leverages conditional text
and image generation to ensure the stories have
the desired continuity. For the text generation, we
finetuned a LlaVA (Liu et al., 2023) model which
allows us to generate the next story caption as well
as a descriptive version of the next caption which
is fed to a Stable Diffusion model for creating the
next images. For the image generation we finetuned
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Figure 1: Example of VIST story, initial frame in red

Storygen (Liu et al., 2024a), a learning-based auto-
regressive model that allows for conditioning on a
text prompt as well as previous image-caption pairs.
We show both qualitatively and quantitatively that
our pipeline leads to generated stories with high
alignment in the previously mentioned areas.

All of the work we do is using the VIST (Huang
et al., 2016) dataset which contains sequences of
captions and images grouped into many stories. An
example of such a story is shown in Figure 1. The
initial frame is boxed in red.

Note that most previous work in visual story-
telling only focused on the generation of the cap-
tions or images given the other. Methods like
AREL (Wang et al., 2018) and PR-VIST (Hsu et al.,
2021) generate text while methods like Storygen
(Liu et al., 2024a) and AR-LDM (Pan et al., 2022)
generate images. Our primary contributions are as
follows:

• Allowing for the simultaneous generation of
images and captions while maintaining the
appropriate consistency

• Using a descriptive text version of a story cap-
tion as input to the image generation model as
opposed to story captions

• Giving users tools to better create/iterate on
visual stories with increased flexibility and
creativity options from text to image models,
while maintaining consistency/editability



2 Related Work and Background (5
papers per person)

Related Datasets

Flintstones SV One related dataset is Flintstones
SV (Maharana and Bansal, 2021) created from the
original Flintstones dataset (Gupta et al., 2018).
The Flintstones dataset consists of videos of 25,184
densely annotated video clips created from the pro-
gram The Flintstones. All the clips are 3 seconds
and typical depict some interaction between the
characters. The Flintstones SV dataset was created
from the Flintstones dataset by sampling a single
frame from each dataset and then grouping frames
from adjacent clips int groups of size 5. Sampling a
single frame from each clip ensures that there is lit-
tle redundancy between frames but using adjacent
clips ensures good coherence.

Pororo SV Another related dataset is the Pororo
SV (Li et al., 2019) created from the Pororo dataset
(Kim et al., 2017). The original Pororo dataset
was used for the task video question answering.
This dataset consisted of clips from the TV show
“Pororo the Little Penguin”. Each clip is one sec-
ond long and has a written description associated
with it. Around 40 of these clips together make
a story and each story has a set of question and
answers associated with it. Pororo SV was created
by sampling one frame from each clip and using
the text description of the clip as the caption. Five
of these frames were concatenated together to give
the full dataset. In total there are 15,336 stories
created which get split in 13,000 for training and
2,336 for testing.

Sequential Storytelling Image Dataset (SSID)
A final related dataset is Sequential Storytelling
Image Dataset (Malakan et al., 2023). SSID was
created in order to address some of the issues with
VIST. Specifically, they note that because VIST
stories were created as a collection of individual
photos in Flickr albums, they lack logical coher-
ence. Therefore, the creators of SSID decided to
create stories from open-source videos from the
following three topics: narrative movies, lifestyle
documentaries, and media appearances. Stories
were created by selecting 5 frames from the video
and then using Amazon Mechanical Turk to crowd
source the story annotation process. A lot of quality
checking was done to ensure the storytelling style.
In total 3,473 stories were created which is much

smaller than VIST.

Unimodal Baselines We include a unimodal
baseline that focuses on the task of generating inter-
mediate captions. To determine how well the text
alone can predict the next text in the story (without
the image), we used a text-only baseline. For this
baseline, the input is a set of four out of five cap-
tions corresponding to a story, and the output is a
fifth caption to finish the story (Figure 2).

The idea behind this baseline is that we want to
investigate how much the story continuity relies
on only the text compared to the text and images
together. Our hypothesis is that both the images
and text provide unique information that needs to
be shared to edit/manipulate one coherent story,
and a poorer performance in this baseline would
show that image data is in fact needed.

The Visual Storytelling dataset paper (Huang
et al., 2016) provides a solution to creating a story
from images in the form of an RNN network that
takes in each image frame and its previous embed-
ding and outputs story captions autoregressively.
Once the transformer architecture (Vaswani et al.,
2017) became more prevelant for text based tasks,
story generation methods switched to encoder/de-
coder methods.

The MPT StoryWriter model (MosaicML) is a
decoder-transformer trained on text obtained by
MosaicML, and then fine-tuned on large story-
based text data. To evaluate the baseline, we com-
pared the generated caption to the original fifth
caption and corresponding image. For purely text-
based metrics, we used the full testing SIS-VIST
subset (approximately 5500 stories), and for text-
image based metrics, we used a subset of approx-
imately 2000 stories for storage efficiency. We
expect this baseline to provide a reasonable out-
put given the previous four captions, but not match
with the expected caption and images given it has
no access to image data. Results are included in
the results section.

Prior Work We divide the prior work broadly
into two groups: image to text and text to image

Image to Text These methods focused on gener-
ating a sequence of story captions for each image
to create a coherent story.

One prior work in this category is Adversar-
ial Reward Learning (AREL) (Wang et al., 2018)
whose key insight is to use reinforcement learning
to learn a reward function from human demonstra-



Figure 2: Unimodal Text Evaluation Example

tions. AREL consists of two major components
a policy model and a reward model. The policy
model is a CNN-RNN which generates words from
a vocabulary given an image to produce a story.
The reward model is a CNN-based model that uses
n-gram features from the text as well as visual fea-
tures from the images to compute an estimated
reward for each substory within a story.

Another prior work in this category is PR-VIST
(Hsu et al., 2021). Pr-VIST is a framework for
story generation whose key insight is to build a
relational graph between all elements in the input
sequence of images and then find the optimal sto-
ryline in this graph to output a final story. The
method can be split into two phases: story plot-
ting and story reworking. In the phase of story
plotting, the story graphed is created by extracting
objects from all the images and linking then using
a prepared knowledge graph. Also in this phase a
storyline is produced from the story graph using
UHop (Chen et al., 2019). In the phase of story
reworking, a generator is used to actual create a
story from the storyline and then a discriminator is
used to classify the story as good or bad. After a
few cycles, the generator learns to produce stories
consist with those of humans.

Text to Image These methods focused on gener-
ating a sequence of image for each story caption
that reflect the text prompt well and align well with
each other.

An initial attempt at generating coherent stories
from text comes from storyGAN(Li et al., 2019),
a GAN based technique where the generator is
conditioned on both previous frames and previ-
ous text captions. With the advent and rapid use
of diffusion models(Ho et al., 2020; Song et al.,

2021; Sohl-Dickstein et al., 2015) for image gener-
ation, subsequent works use these instead for initial
model weights.

AR-LDM (Pan et al., 2022) is a model that fits
in this category. The model takes as input a set
of story captions and outputs an image for each
caption. This was the first application of diffusion
models to synthesize coherent stories using previ-
ous image-caption pairs. Previous work assumed
conditional independence between different frames
and used only the captions to generate each im-
age. The architecture of AR-LDM utilizes a CLIP
text encoder for the current caption and a BLIP
multimodal encoder for the history of all previ-
ous image-caption pairs which allow it to generate
context-aware images. The output image for the
current frame is fed to the BLIP encoder in an auto-
regressive process.

The authors evaluated AR-LDM on three
datasets including the VIST dataset that we will
be using for our project. To measure performance
they used a combination of FID score and human
evaluation. The model achieve state of the art
scores on both in the tasks of story visualization
and story continuation. For human evaluation, re-
viewers were asked to compare stories generated
by AR-LDM to models such as StoryDALLE on
the axes of visual quality, relevance, and consis-
tency. AR-LDM was overwhelmingly preferred on
all axes across all 3 datasets tested. In terms of
the automatic evaluation, AR-LDM also achieved
a much lower (better) FID score across all datasets
compared to all previous methods.

StoryGen (Liu et al., 2024b) is another model
in this category. It is an autoregressive image gen-
eration model that conditions on both the current
text prompt and previous image-caption pairs. The
conditioning on the previous image-caption pairs
ensures the same style is maintained throughout
the story.

Improved Visual Story Generation with Adap-
tive Context Modeling (Feng et al., 2023) aims
to leave the single step autoregressive framework
from AR-LDM while trying to minimally change
architecture. In order to achieve this goal, they add
a component that chooses which of the previous
frames are useful for attention, then doing cross
attention with that frame (in practice, they use a
weighted combination of frames). They also apply
a final guidance step with previous frames at every
diffusion step if they deem some previous frame to



be very similar to their current frame.

Relevant techniques LoRA, or low rank
adapters (Hu et al., 2021) is a technique used for
finetuning both large language models and text to
image models (Ryu, 2023). Instead of finetuning
the entire weights of a model, LoRA postulates
that the update should only be in a low rank space,
and to enforce this constraint, the learn matrices
∆W = BA, where W ∈ Rn×m is the original
weight matrix, and B ∈ Rm×r, A ∈ Rr×n are the
trainable weights, with r ≪ n,m to enforce the
low rank constraint.

Another relevant technique is visual instruction
tuning (Liu et al., 2024b),

3 Task Setup and Data

We consider a story to be a set of pairs
{(ik, ck)}nk=1 where ik is the k-th image, ck is the
k-th caption, and n is the length of the caption.
The task is given (i1, c1) generate {(ik, ck)} for all
k > 1. Note that most of the stories in the VIST
dataset have length n = 5. However, the task also
requires that there is alignment amongst the ik’s,
alignment amongst ck’s, and strong alignment be-
tween any pair (ik, ck) for any k in order to ensure
that there is a valid story. In order to measure the
image-text alignment we used CLIP score (Rad-
ford et al., 2021). To measure the quality of the
generated captions, we used roBERTa embedding
similarity (Liu et al., 2019) with the ground truth
captions.

As stated above we are using the VIST (Huang
et al., 2016) dataset for training and evaluation of
our pipeline. The dataset currently contains around
167,528 unique images and 40,155 stories which is
a sequence of around four or five images that gen-
erally have similar content. The dataset was con-
structed by querying the Flickr API for albums that
matched with terms the authors considered “sto-
ryable”. The authors also ensured that the albums
had between 10 and 50 images all taken with 48
hours of each other which helps ensure they have
a common style. After finding these albums, they
leverage the Amazon Mechanical Turk in order to
crowd source the creation of stories.

Note that within VIST there are actually two sep-
arate types of annotations: Story-in-sequence (SIS)
and description-in-isolation (DII). The captions in
SIS are supposed to tell a story and use much more
figurative language. On the other hand, DII cap-
tions provide a more descriptive depiction of each

image and does not consider the context of a story.
This idea of descriptive text and storytelling text is
crucial to the rest of the work.

4 Baselines

Results for all baselines are shown in section 6.

4.1 Image to text baselines
4.1.1 BLIP
For the task of generating a story from a set of im-
ages we included a naive baseline in which we used
BLIP to generate a caption for each given image.
This method is naive for two reasons. One is that
there is no notion of a coherent story as only the
current image is used to generate the output cap-
tion. Therefore, it essentially reduces the task of
visual storytelling to that of image captioning. The
second is that BLIP outputs text that is much more
descriptive in nature than the text for storytelling
is supposed to be. However, in terms of generating
captions aligned with the story images it does rep-
resent a valid baseline. It also gives us a sense how
much models like AREL and PR-VIST, which are
tailored to storytelling, improve over generic cap-
tioning models. We used a subset of around 30%
of the SIS-VIST subset and evaluated the captions
outputted by BLIP in two ways: the textual simi-
larity between it and the ground truth captions and
the text-image alignment with the original image.
For evaluating textual similarity we used cosine
distance of SRoBERTa sentence embeddings as
well as the n-gram metric METEOR. For image
text alignment we used CLIP score.

4.1.2 PR-VIST
A description of PR-VIST is provided in section
2. We evaluated PR-VIST on the entire SIS test
set. For evaluation we again measured the text
similarity to the ground truth captions using co-
sine distance of the sRoBERTa embeddings and
METEOR. Note that because PR-VIST generates
the entire output story at once rather than frame
by frame, we are unable to measure the text-image
alignment using CLIP score in the way that we
were for some of the simpler baselines.

4.1.3 AREL
A description of AREL is provided in section 2.
We used the entire SIS test set for the evaluation
of AREL. As with the other text generation base-
lines we evaluate the similarity to the ground truth
captions with cosine distance and METEOR.



4.2 Text to Image baselines

4.2.1 Independent Text-to-image methods
We also consider the task of generating images
from a set of text captions. For this task, we con-
sider the text captions as given by the descriptive
caption set of the Visual Storytelling dataset. While
these captions do not form a cohesive story from
frame to frame, they better describe each frame,
which is more conducive for use in a text-to-image
model. For image generation, we consider three
different Stable Diffusion models. For all methods,
we consider each frame as an independent image,

First, we consider SD 1.5 (Rombach et al., 2022),
the original Stable Diffusion model trained on inter-
net scale data. Next, we consider the second, larger
version SDXL (Podell et al., 2023), which produces
higher fidelity images at the cost of higher compute.
Finaly, we use Stable Diffusion Turbo (Sauer et al.,
2023), a one step model distilled from the original
Stable Diffusion model (Rombach et al., 2022). We
chose this model as a final test in order to speed
up image generation while not sacrificing a large
amount of image quality, since we evaluate on the
test set, containing thousands of images.

4.2.2 Image editing and insertion
To produce realistic newly generated captions
based on the stories within the testing data, we
utilized prompt engineering with ChatGPT. We for-
matted each set of individual captions into one co-
herent story, and inputted it along with additional
information specific to the baseline’s requirement.
For the editing baseline, we asked ChatGPT to re-
place the second sentence with another sentence
that matches the context of the rest of the story. For
the insertion baseline, we asked ChatGPT to gen-
erate a new sentence between the second and third
captions that makes sense in the story. These were
then used as “edited” or ”inserted” captions respec-
tively to guide their respective image generation
tasks.

For the task of image editing, we use SD Turbo
(Sauer et al., 2023). We add 50 percent noise to
the original image, and denoise with the new cap-
tion produced by chat GPT. Again, we use the de-
scriptive captions as a base. For the task of new
panel insertion, we use SDXL Turbo (Sauer et al.,
2023) for image generation using the new captions
provided by ChatGPT. Of note for the image gen-
eration methods is that they do not condition on
other images in the story, as the original stable

Figure 3: Architecture for Intlligent Grimm (?) with
LoRA added for better description learning

Figure 4: Architecture for VQA learning. Note that
descriptions are generated in a story-aware manner

diffusion methods have no ability to condition on
other images, and image conditioning methods on
stable diffusion (Mou et al., 2023) usually control
style/edge maps as opposed to our tasks. Com-
petitive baselines that condition on previous story
frames are very computationally costly for training,
indicating that it is not trivial to alter a stable dif-
fusion model to take in previous frames of a story
and output a new frame.

5 Proposed Model (>1 page)

We created a three component system. The first
component takes in the previous frame(s) and text
for the current frame, and outputs the next frame
(Figure 3). The second component takes in the pre-
vious frame and story text and outputs story text.
The third component takes in the previous frame,
story, caption, and newly generated story caption,
and generates a description (Figure 4). In previ-
ous SOTA work for frame generation, the current
frame’s story label along with used as an input to
a diffusion model to create the next image. Our



key insight is that the story label may not be the
optimal label for Image generation. In Figure 4,
the current story label is “He had a great time on
the hike”. While this makes sense in the context
of the story, it does not fit as the input to a diffu-
sion model outputting a brown dog with a stick in
his mouth. To mitigate this mismatch, we decided
finetuning the VQA model LlaVA (Liu et al., 2023)
to output BOTH a story text and a descriptive text
for every frame. We actually finetuned two sepa-
rate models, one that outputs the descriptive text
and one that outputs the the story text. In the fi-
nal pipeline, the descriptive text will then be used
along with previous frames to condition a diffusion
model producing the next image.

The diffusion model we used was StoryGen (Liu
et al., 2024a) Since we build off of previous work
that takes story captions as input the the diffu-
sion model (Liu et al., 2024a). Since the diffusion
model requires rich text to generate high quality
images, the story captions in this work were very
long and descriptive, which may not be optimal
in all settings. To mitigate this, we also finetune
the diffusion model with descriptive text from the
ground truth descriptive labels instead of the story
text. Secondly, StoryGen introduces a mechanism
for previous image conditioning. In order to get
features from the previous images for use by the
diffusion model, the previous images themselves
are slightly noised and denoised with their own
descriptive text by the same finetuned model, and
the model features from previous frame denoising
are used as conditioning for the current frame de-
noising. A new cross attention block is introduced
for this task. For all experiments, we pass in the
previous three frames features as conditioning, and
pad with blank images if there are less than three
images prior to the current image being generated.

5.1 Loss functions

For finetuning the two LlaVA models we used cross
entropy loss on the output text given by the model
with the ground truth text. For finetuning the story
text model, the model was prompted with the the
image and story caption for the previous frame and
asked what the next caption should be. The prompt
configutation is shown below .

{
"id": unique_id,
"image": f"{img}.jpg",
"conversations": [

{
"from": "human",
"value": "Current frame story
caption: ’" + story_text_curr
+ "’, What is the next frame
story caption?"

},
{

"from": "gpt",
"value": story_text_next

}
]
}

For finetuning the descriptive text model, the
model was prompted with the previous image, pre-
vious story caption, and the story caption for the
current frame. The model is asked what the descrip-
tive text for the current frame should be. Note that
when training we use the ground truth sis captions
for the story caption of the current frame rather
than the other LlaVA model. Therefore, the train-
ing of the two models is completely separate. The
prompt configuration is shown below.

{
"id": unique_id,
"image": f"{img}.jpg",
"conversations": [

{
"from": "human",
"value": "Previous frame
story caption: \’" +
story_text_curr + "\’,
Current frame story caption:
\’" + story_text_next
+ "\’, What is the
description of this
caption?"

},
{

"from": "gpt",
"value": description_text

}
]
}

For finetuning the StoryGen model, we follow
the finetuning procedure of IntelligentGrim(Liu
et al., 2024a) and standard diffusion models (Rom-
bach et al., 2022). Given a noisy input frame and
text caption, the diffusion model denoises the input
to yield a clean image. From here, Mean Squared
Error loss is applied w.r.t. the ground truth clean



image, and model parameters are updated. We fine-
tune using the Visual Storytelling dataset (Huang
et al., 2016) for 50000 steps with a batch size of 12
across 3 NVIDIA A5000 machines.

5.2 Changes to training data

When preprocessing the training dataset we filtered
out any stories that did not have exactly 5 frames.
Additionally, we resized all the images to 512×512
and converted them to jpegs for storage reasons.

5.3 Hyperparameters and their effects

LlaVA Model Hyperparameters

• Training data size: For both the story text
LlaVA model and descriptive text LlaVA
model we trained once where we used 2,000
examples from the VIST train set and many
times where we used 10,000 example from
the VIST train set. We then evaluated on the
full VIST evaluation dataset by measuring the
SRoBERTa cosine similarity to the ground
truth stories. We found that the models trained
on 10,000 examples performed better as seen
in results section.

• Temperature: We also varied the temperature
governing the shape of the distribution used
to sample the tokens when generating the out-
put. We got the best results with the smallest
temperatures or a very sharp distribution over
the output tokens.

Storygen Model Hyperparameters

• Classifier Free Guidance: Since we are using
a diffusion model, a common hyperparameter
is classifier free guidance (Ho and Salimans,
2022). This allows a tradeoff between diver-
sity of images generated with a text prompt
and image quality, where quality increases
and diversity decreases as the guidance scale
increases.

• Image guidance: this parameter controlled the
degree to which we condition on the previous
frame when generating the new frame. Sim-
ilar to classifier free guidance, image guid-
ance allows tradeoffs between diversity of
the next frame and consistency with previous
frames. As seen in the results section varying
this parameter did not affect the similarity to
the ground truth images too much and only

slightly increased the similarity to previous
images.

6 Results (1 page)

Text Generation: Ours vs Baselines All of the
baseline and model text results are shown in Ta-
ble 1. Compared to MPT, our models outperform
in all three metrics. One of the likely reasons for
this is that MPT is unimodal (only text) and our
model uses both caption and image information.
Therefore, our model has more story context, and
therefore can produce content more closely align-
ing with the original story. Compared to BLIP, our
model performed worse for METEOR and CLIP,
but performed better for SRoBERTa. One expla-
nation for the underperformance on the first two
metrics is that it is likely the images themselves
contain enough story objects that act as key words
in the story, and thus more closely align with the
story. However, unlike the first two metrics, the
SRoBERTa metric contains information from all
the story captions. Therefore, unlike BLIP our
model has the ability to carry information across
frames, and thus using more story context is able
to achieve a higher SRoBERTa score. Compared to
the two SOTA models, our model performs worse
on METEOR and better on SRoBERTa. As will be
shown later, our model sometimes produces more
generic outputs, which could explain why when
comparing single frames our model performs worse
compared to the SOTA models for METEOR. How-
ever, similarly to the BLIP case, since our model is
based on a well-established VLM, it is able to more
effectively capture story-wide information, which
is shown by how the story-wide metric SRoBERTa
shows our model performs better.

Text Generation: Autoregressive vs Non-
Autoregressive When comparing the text re-
sults generated autoregressively compared to non-
autoregressively, the performance decreases. How-
ever, this is expected given that since both the cap-
tions and images are only grounded to the GT data
via the first frame and caption, the model has cre-
ative freedom to generated a completely new story.
Therefore, while the non-autoregressive results are
forced to be closer to the ground truth captions,
the new captions follow a story that only starts the
same as the ground truth. Thus, when comparing
the autoregressive results against the ground truth,
the similarity metrics decrease as expected. They



Avg
Methods METEOR ↑ CLIP Cos Sim. ↑ SRoBERTa Cos Sim. ↑

MPT (MosaicML) 0.066 0.201 0.208

BLIP (Li et al., 2022) 0.090 0.289 0.266

AREL (Wang et al., 2018) 0.353 - 0.478
PR-VIST (Hsu et al., 2021) 0.176 - 0.462

Ours - 2k (temp = 0.2) 0.071 0.239 0.555
Ours - 10k (temp = 0.2) 0.076 0.240 0.586
Ours - 10k (temp = 0.5) 0.072 0.236 0.567
Ours - 10k (temp = 1) 0.072 0.235 0.570
Ours - 10k (temp = 2) 0.042 0.216 0.446

Ours - 2k (Autoregressive) 0.054 - 0.357

Table 1: Text based metrics

Methods CLIP Text-Image Sim ↑ Previous Image Sim ↑ Ground Truth Image Sim ↑ Total Story Image Sim ↑

Baseline Images 0.295 .679 N/A .675
SDXL-Turbo (GT caption image generation) 0.316 0.572 0.688 0.591
SD-1.5 0.309 0.575 0.681 0.589
IntelligentGrimm (no finetuning) 0.278 0.592 0.650 616

Ours (Non-autoregressive, image guidance=5.0) 0.300 0.646 0.724 0.642
Ours (Non-autoregressive, image guidance=3.5) 0.306 0.639 0.726 0.632
Ours (Fully-autoregressive, image guidance 5.0) 0.196 0.626 0.581 0.740

Table 2: Image Generation Results

are only calculated because if they were orders
of magnitude lower, then most likely something
would be wrong with the content generation itself
(for example, not creating valid sentences). Since
the autoregressive results aren’t grounded to any
ground truth data, they should be mainly evaluated
using the intrinsic metrics and visually by example.

Image Generation Metrics We consider a few
metrics when measuring story performance for im-
age generation. The first is similarity to the de-
scription text provided. Stories should follow the
description provided by either a user or another
model for the generation process. The next is previ-
ous image similarity. A cohesive story should have
subsequent frames similar to their previous values.
We also measure ground truth image similarity,
with the goal being to be as similar as possible to
the ground truth images. Finally, we measure total
story similarity, where we take the average similar-
ity between any two frames in a given story. For
all similarity metrics, we consider cosine similarity
between CLIP embeddings.

Image Generation: Baselines We consider a
fewWe consider a few baselines when running im-

age generation. The most naive baseline is simply
running stable diffusion 1.5 (Rombach et al., 2022)
or SDXL-turbo (Sauer et al., 2023) on ground truth
descriptions. Since these models are very power-
ful, we expect to have high text to image similarity,
but then worse performance on statistics that mea-
sure story cohesiveness. As expected, the text to
image similarity for these models are on par with
other results from this section, however they suffer
when measuring metrics like ground truth similar-
ity, previous image similarity, and total story image
similarity. We also measure the baseline images
themselves, to get an understanding of optimal total
story/previous image similarities.

We consider a few different versions of our
model. In the Non-autogregressive case, we con-
dition each subsequent frame generation with the
ground truth images/descriptions, and pass in the
ground truth description to the model. We see that
both image guidances produce higher text-image
similarity, previous images similarity, and ground
truth image similarity when compared to baselines.
We also see a higher total story image similarity,
where the total story consists of 4 frames generated
in this way plus the original ground truth frame.



Secondly, the higher image guidance method per-
forms slightly better with respect to all story coher-
ence metrics, but overall performs very similarly
to the other method.

We also comsider the intelligentGrimm (Liu
et al., 2024a), but without our finetuning compo-
nent. Surprisingly, the ground truth image similar-
ity for this method actually performs worse that the
baseline methods that don’t condition on previous
images. We surmise this is because the intelligent-
grimm method is finetuned on cartoon-type data, so
as a result images may come out looking unrealistic,
also lowering clip similarity to the description text.
This is further proven by results in Figure 10. With
that being said, images are still more similar to the
previous image than the non-conditioning baseline,
indicating that this method without finetuning is
still taking into account the previous frames.

In the autoregressive case, we condition each
subsequent frame with the previously generated
frames and captions, and generate next captions
with our own llava finetuned model. As a result,
over the course of the story we see much lower cor-
respondence to the ground truth images and ground
truth text descriptions, but comparable values to
our other method versions for previous image simi-
larity. Surprisingly, the total story image similarity
metrics is significantly higher in this case. This
could be because the model is unlikely to switch
scenes between frames which happens fairly reg-
ularly in the dataset itself, causing many frames
to look similar to each other. See Figure 11 for
examples.

7 Analysis (2 pages)

This section should include plots. For example,
how key metrics vary with a specific hyperparame-
ter, task complexity, etc.

7.1 Intrinsic Metrics
These are not the task itself (they might over-
lap with auxiliary losses) but are skills the model
should have.

Intrinsic Metric 1 In order to determine how
aligned a story is with the goal of storytelling in-
stead of just giving text descriptions, we decided to
include a metric counting the number of pronouns
in the generated captions. Thus for each model, we
computed the average number of pronouns in each
SIS story. The results are reported in Table 3. The
hypothesis is that models which just describe the

content of the images will include fewer pronouns
than models which have been trained to output co-
herent stories. The average number of pronouns
per story in the SIS dataset was 2.73.

• MPT: Significantly more pronouns than the
ground truth stories

• BLIP: Significantly fewer pronouns than
ground truth stories. This makes sense as the
model aims to describe the image rather than
tell a story.

• AREL: Similar number of pronouns in gener-
ated stories as the ground truth.

• PR-VIST: Slightly more pronouns that the
ground truth.

• Our Method: On average slightly less pro-
nouns than the ground truth.

Intrinsic Metric 2 One important aspect of the
text generation for each image is that it should read
like a story, instead of just a description of the im-
age. Therefore, we compared the words used in
the generated text to the ground truth texts. We
aimed to do two comparisons: A comparison to
the story-based captions (SIS), and the description-
based captions (DII). In the ideal case, the gener-
ated text will be very similar to the SIS text given
they represent the type of story-based descriptions
we desired. Furthermore, the similarity to the DII
should be worse, but not too poor given they are
describing the same concepts.

In order to compare the words used, we utilized
the KL-divergence between the words used across
all the captions between the different sets of text.
Specifically, we computed the KL-divergence be-
tween generated text and SIS captions, and between
the generated text and the DII captions. Addition-
ally, we applied smoothing to adjust for the cases
where words appear in one set of text but not the
other to prevent the divergence from reaching in-
finity. We evaluated the five text-producing models
using this metric: MPT, BLIP, AREL, PR-VIST,
and our best finetuned LlaVA model with the train-
ing set size of 10,000 and temperature of 0.2. The
overlap between these distributions can be seen in
Figures 5, 6, 7, 8, 9.

The model with the best (smallest) KL-
divergence was MPT with scores of 0.84 and 1.71
for the SIS and DII comparisons respectively. Its
good performance for SIS makes sense, given that



its only input is other SIS captions. Since it is a
GPT model, which aims to predict the appropri-
ate text response given text input, it should predict
words similar to the input words. Furthermore,
the switch from using story-based words to more
descriptive words appropriately causes a drop in
similarity when comparing the generated text to the
DII captions.

The next best performing model was our model
with a score of 1.45 for SIS and 1.40 for DII. For
DII, our model conditions on the previous story
text, previous image, and current story text. Hav-
ing access to all these pieces of information likely
enhanced its ability to produce descriptive text that
both matched the style of the previous descriptive
text and matches the current story caption which
is why the DII score is quite good. The SIS perfor-
mance is also very strong likely due to the same
reasons as MPT.

The BLIP model produced scores of 6.75 and
2.27 for SIS and DII respectively. The poor similar-
ity between the generated captions and SIS captions
is most likely due to the fact that BLIP is an im-
age description model, meaning that it won’t have
”story-like” words (such as pronouns as mentioned
previously). Consequently, it makes sense that the
DII captions were more similar given that they are
description-based rather than story-based.

AREL produced scores of 4.53 and 6.10 for SIS
and DII respectively. As expected, the SIS score
was better than the DII score since the model is
trained to produce story-like output. However, its
poor overall performance in both SIS and DII can
be explained by common undesired behavior. First,
the model often produced text that repeated itself,
leading to an unrealistic story. Second, many of
the outputted captions followed the format of ”This
is a picture of [word].” This is both unstory-like,
and also is even unlike a description given that
descriptions usually describe the image, instead of
just stating that it is describing an object. Examples
of both of these behaviors will be shown in the
qualitative analysis for text baselines later.

Finally, PR-VIST produced scores of 2.21 and
3.15 for SIS and DII respectively. Similarly to
MPT and AREL, the model is designed to produce
story-like text, and therefore makes sense that the
SIS similarity was better than the DII similarity.
One notable difference between the generated text
and ground truth text that could partially explain
a loss in performance was the fact that instead of

using proper nouns, PR-VIST outputted text to fill
in. For example, instead of saying a woman’s name,
it would output ”[female].”

Overall, it seems like the main factor that af-
fected the word distribution similarity was if other
words from the same distribution were used as in-
put, given that MPT and our model were the only
ones that did this, and thus greatly outperformed
the three other models. Therefore, it is imperative
that our model utilizes training text from SIS and
DII efficiently.

Intrinsic Metric 3 In order to determine if gener-
ated images generally look realistic and come from
a similar distribution to ground truth images, we
use bounding box detection as a proxy. Specifically,
we consider a bounding box-specific metric:

1. bounding box number. Specifically, we mea-
sure the number of bounding boxes in each
image and compare results via histograms

We note that our method does not heavily reduce
the number of bounding boxes found in stable diffu-
sion images, which indicates that the images being
generated still fall under the distribution of natural
images given descriptions. This is a good sign that
the generated stoires are coherent as standalone
individual images. We see that SDXL-Turbo pro-
duces slightly more bounding boxes than other
methods, which may be a direct result of the fact
that it is a higher fidelity model trained on a larger
and more carefully curated dataset. Finally, we see
that the intelligentGrimm method performs worst
in terms of bounding box predictions, which could
be a result of cartoonish outputs.



Methods Pronouns↑ Word Divergence (SIS/DII) ↓ Objects ↑

MPT (MosaicML) 6.93 0.84/1.71 -

BLIP (Li et al., 2022) 0.45 6.75/2.27 -

AREL (Wang et al., 2018) 2.32 4.53/6.10 -
PR-VIST (Hsu et al., 2021) 3.85 2.21/3.15 -
SD 1.5 ((Rombach et al., 2022)) - - 4.58
SDXL-Turbo ((Sauer et al., 2023)) - - 4.69
IntelligentGrimm ((Liu et al., 2024a)) - - 3.99

Ours (Non-autoregressive, image guidance=5.0) - - 4.53
Ours (Non-autoregressive, image guidance=3.5) - - 4.54
Ours (Fully-autoregressive, image guidance 5.0) - - 4.57

Ours - 2k (temp = 0.2) 1.75 1.57/1.93 -
Ours - 10k (temp = 0.2) 1.71 1.45/1.40 -
Ours - 10k (temp = 0.5) 1.97 1.05/- -
Ours - 10k (temp = 1) 1.96 1.02/- -
Ours - 10k (temp = 2) 6.21 0.56/- -

Ours (Autoregressive) 1.89 3.46/2.76 -

Table 3: Intrinsic Metrics for Baselines and Our Models



Figure 5: Overlap in word distributions between MPT-generated captions and SIS (left) and DII (right).

Figure 6: Overlap in word distributions between BLIP-generated captions and SIS (left) and DII (right).

Figure 7: Overlap in word distributions between AREL-generated captions and SIS (left) and DII (right).

Figure 8: Overlap in word distributions between PR-VIST-generated captions and SIS (left) and DII (right).

Figure 9: Overlap in word distributions between our model (10k, temp=0.2) captions and SIS (left) and DII (right).



7.2 Qualitative Analysis and Examples (full
page tables – multiple pages for most
projects)

In Figure 10, we consider generating the third
frame of a story from the VIST validation set. when
using Stable Diffusion 1.5 (Rombach et al., 2022)
and SDXL-Turvo (Sauer et al., 2023), we condition
only on the generation prompt. For our method and
IntelligentGrimm(Liu et al., 2024a), we also con-
dition on the previous frames/captions. First, we
notice that the methods that only condition on the
description have no notion of story coherence. In
the first row, both SD 1.5 and SDXL-Turbo fail to
output a woman consistent with the previous frame.
However, some frames do not need to be aware of
previous frames to generate a coherent output, as
can be seen with these two baselines in the second
and third row, where they output reasonable frames
as compared to the ground truth third story frame.
Next, note that intelligentGrimm was trained to out-
put stories as seen in comic books or other media,
and as a result can tend to output cartoonish images,
as can be seen in rows 2 and 3. Finally, our method
succeeds in keeping the clothing and hair type of
the woman the same in row one of the image, as
well as the hat on the boy in the last row. However,
since our model is still based on SD 1.5 and not
SDXL, it can struggle with multi-person scenes,
as can be seen by the poor quality of the peoples
faces and the background in row 4, as compared
with the more coherent image produced by SDXL-
Turbo. In figure 11 we examine our full pipeline
starting from a single image/caption, where we gen-
erate both next captions and next images for the
remaining 4 frames autoregressively. Looking at
the two stories our model generated in Figure 11,
the first thing to notice is that we are able to gen-
erate consistent lighting/scenes/characters in the
first part of the story. With this being said, we
see that there were many repeated or very similar
captions. In the story on the bottom, the caption
changes from “The crowd was getting excited” in
frame 2 to “The crowd was getting more excited”
in frame 3. This is due to the autoregressive nature
of the model and conditioning to heavily on the
previous caption. Perhaps if we conditioned on
all the previous captions instead of just the most
recent one, we would get more diversity in captions
as we move along the story. In the second story, the
fact that the scene is a horse race is lost after frame
2, since only a picture of a crowd is shown and

the llava text description model is only conditioned
on a single prevous frame. This causes the failure
case of switching to a baseball game. From here,
the scene switches from a baseball game to a foot-
ball game, highlighting the fact that our method
can sometimes generate inconsistent stories across
frames.



Figure 10: Comparison to baselines. We consider two ground truth story images with captions as input, and consider
the output with a new ground truth story description from all models



Figure 11: Autoregressive Story Generation compared to baseline



Example Input (Us-
ing GT VIST Cap-
tion and Image)

10k (temp = 0.2) 10k (temp = 0.5) 10k (temp = 1) 10k (temp = 2) Comparison/Failures

”Current frame story
caption: ’We gath-
ered up some fire
works to set off at
dark.’, What is the
next frame story cap-
tion?”

”We had a great time.” ”There was a bird watching us
as we set up the fireworks.”

”The kids had a great time set-
ting them off.”

”There we are, having lots of
blanks all set! And the colors
on them”

In this case, when the temperature was
too low (t=0.2), the text was very generic
and didn’t include anything specific to the
story. When the temperature was mid-
range (t=0.5 and t=1), the stories were both
creative and specific to the current context
(fireworks). When the temperature was too
high (t=2), the caption started to sound too
conversational compared to story-like, and
was too long so it got truncated.

”Current frame story
caption: ’Some of
the parents gathered
in the backyard to
supervise other chil-
dren who wanted to
swim.’, What is the
next frame story cap-
tion?”

”The children were having fun
swimming in the pool.”

”The children were having fun
on the boats.”

”A little girl and her mom
looked on as they watched the
other children swim.”

”And they were there while the
twilight fell over them from
time passed to time untold and
they all wanted one more turn
on tha swingset outside under
its yellow twilights”

The t=0.2 result gave a reasonable continu-
ation of the story based on the caption and
image. The t=0.5 and t=1 results started to
give misinformation relative to the image,
such as the fact that a boat could fit in that
pool, or that there was a little girl on the
deck. The t=2 caption was very long and
convoluted.

”Current frame story
caption: ’These peo-
ple went to a lot of
expense and time to
entertain us!’, What
is the next frame
story caption?”

”The lights are so bright that it
is hard to see the house.”

”This is a beautiful sight!” ”The lights are on and the peo-
ple are enjoying the display.”

”This light bulb tree light shows
off the winter theme beauti-
fully.”

The t=0.2 result goes against the input
premise that they are enjoying the decora-
tions. The t=0.5 and t=1 captions are okay,
but somewhat generic. The t=2 caption
continues the excitement theme from the
input caption, and mentions specifically
the tree in the image at the forefront.

Table 4: Qualitative Analysis and Examples for Story Caption Model Outputs



8 Future work and Limitations (1 page)

One area in which our model doesn’t work well
is remembering long-term story information. For
caption generation, our model currently only uses
information from the previous frames, and not all
the frames before. Therefore, if information is both
lost in the caption and not kept in the image it-
self, then that information is lost for the rest of the
story. To improve on maintaining information long-
term, we train the whole model autoregressively in-
stead of frame-by-frame, and for each input use all
the captions from the previously generated frames.
This would lead to less stability when training, but
would allow information the model to have the ca-
pacity to manage long term information from the
story.

In addressing the challenge of maintaining long-
term story coherence in visual storytelling, State
Space Models (SSMs) present a promising avenue.
SSMs are particularly adept at efficiently modeling
long sequences. By conceptualizing each frame of
a story as a state influenced by both its previous
state and a control input (in this case, the narra-
tive elements or actions depicted in each frame),
SSMs can effectively capture the dynamic changes

throughout the story. This approach allows for a
more nuanced tracking of narrative elements, ensur-
ing that details are neither lost in transition between
frames nor misrepresented as the story progresses.
Moreover, the inherent structure of SSMs facili-
tates the modeling of hidden states that may not be
directly observable through the images or captions
but are crucial for the continuity and coherence of
the storyline. By integrating SSMs, we can enhance
our model’s ability to remember and correctly ref-
erence key story elements such as character devel-
opments, thematic shifts, and plot advancements
over longer sequences, thereby resolving one of the
critical limitations of our current system.

Another limitation our model has it is has trou-
ble using names in the story captions. When the
story starts with mentioning a specific person by
name, the model usually ignores this information
in the next frame and refers to them as a generic
person instead. This produces more generic and
less story-like descriptions. One possible method
for improving on this issue would be to augment
the VIST training data to include more names. For
example, one could go through each training ex-
ample and replace pronouns with made up names,
and therefore providing the model with more ex-
amples of how to transfer name information when
generating new captions.

To further enhance our model’s ability to consis-
tently use and remember names throughout a story,
integrating Named Entity Recognition (NER) tech-
nology presents a promising solution. By incor-
porating NER into the model’s training process, it
can be trained to identify and track named entities
across the sequence of captions. This will enable
the model to recognize names as important textual
elements that need to be preserved across frames.
Implementing NER would not only ensure that
names are maintained in the narrative but would
also improve the overall continuity and personal-
ization of the generated stories. Additionally, by
enhancing the model’s capability to handle named
entities accurately, we can foster richer and more
complex narrative structures where character devel-
opment is pivotal, thereby significantly improving
the storytelling quality.

Another area of future work would be to try
to train a single multimodal model to ouput both
the descriptive and story text rather than having
separate models for each task. Currently, the model
for generating the descriptive text has access to the



story text at the current frame but the model for
generating the story text does not have access to
the descriptive text. Perhaps, this asymmetry is
leading to poor story captions and training a model
to output simultaneously may prove to be better. It
may ensure greater alignment among the resulting
text and could potentially reduce the amount of
compute required for training.

We also would have liked to evaluate our model
on some of the other storytelling datasets such as
Flintstones SV, Pororo SV, or SSID (all discussed in
section 2). The stories in the VIST dataset were cre-
ated from indiviudal photos in flickr albums while
these other datasets sampled frames from videos
and contain more consistency in the characters be-
tween frames. Our autoregressive strategy might
have performed better on the stories in these other
datasets where there is more alignment among the
images and each frame is fairly predictive of the
next.

9 Ethical Concerns and Considerations
(unintentional, malicious, and dual-use)

With the visual storytelling task, there are not nec-
essarily a multitude of malicious or dual-use cases
for the pipeline we built. There are some potential
ethical concerns in terms of representation in the
generative models. As with any generative mod-
els, any bias in the pre-training or finetuning data
might also be present in the generated images or
text. As shown in (Luccioni et al., 2023) , text-to-
image systems have been shown to under-represent
marginalized groups across race, gender, and age.

However, because are our auto-regressively gen-
erates the remainder of a story given the initial im-
age and caption this might be less of a concern. We
hope that the conditioning on the previous frame
causes the model to output characters and text simi-
lar to the first frame that they provided which would
help alleviate some of the bias in training data.

In addition to representation issues, the model
could theoretically generate offensive content in the
images or captions. Mitigating this would likely re-
quire reinforcement learning from human feedback
(RLHF) which could potentially be time consum-
ing but would be necessary if a story generation
tool was ever client-facing.



10 Team member contributions

Nevan Contributed sections 1-5 and 9 of the
writeup and also helped with others, brainstormed
methods for text evaluation

Maxwell Setup the environment for and fine-
tuned the Intelligent Grimm model for the image
generation section of the project, generated all im-
ages from the model for evaluation, generated all
images for baseline methods and ran metrics for
the baseline methods. Ran the full model pipeline
for doing both text generation and using that text
generation for image generation, and made figures
for results that required images. Wrote the sections
that relate to anayslsis of image generation results
and the results themselves. +-+Also made the ta-
ble for image generation. Wrote code to calculate
bounding boxes and analyzed the results in the doc.

Alex Ran and computed metrics for the MPT
baseline. Created LLaVA fine-tuning, evaluation,
and visualization code, and ran all the LLaVA pro-
cedures that didn’t involve image generation. Ran
the text metrics for the model, and analyzed the
text based results and limitations.

Hyunwoo Wroked on descriptive caption gener-
ation for images and insertion prediction baseline
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