Maxwell Jones

PhD Candidate Machine Learning Department Carnegie Mellon University

website: maxwelljon.es mjones2 [at] andrew [dot] cmu [dot] edu

Education

Carnegie Mellon University Machine Learning Department, PhD. Advisors: Jun-Yan Zhu and Ruslan Salakhutdinov 2024 - Present Machine Learning Department, MS (GPA: 3.93/4.3) 2023-2024 B.S Artificial Intelligence (GPA: 4.0/4.0) 2019-2023 B.S Discrete Math and Logic (GPA: 4.0/4.0) 2019-2023 Thomas Jefferson High School for Science and Technology 2015-2019

High School Diploma 2019 (GPA: 4.1/5.0)

Publications

- Maxwell Jones, Sheng-Yu Wang, Nupur Kumari, David Bau, and Jun-Yan Zhu. Customizing Text-to-Image Models with a Single Image Pair . SIGGRAPH Asia 2024. [Paper].
- Dravyansh Sharma, and Maxwell Jones. Efficiently learning the graph for semi-supervised learning. UAI 2023. [Paper].
- Melissa Hall, Laurens Van der Maaten, Laura Gustafson, Maxwell Jones, and Aaron Adcock . A systematic study of bias amplification . CVPR TSRML Workshop 2022. [Paper].

Awards/Honors

• ULSAC (University Leadership Student Advisory Council)	2023-Present
• CMU Rales Fellowship (~80k/yr, 2 yrs)	2024-Present
• Siebel Scholarship (35k)	Spring 2024
• CMU Mark Stehlik Introductory and Service Teaching Award (statement)	Spring 2023
• CMU Phi Beta Kappa Honor Society	Fall 2023
Work Experience	
Meta FAIR Labs	Summer 2022
Software Engineer Intern. Research Team	

Software Engineer Intern, Research Team

- Co-authored paper to benchmark algorithmic Bias Amplification of models from biased datasets
- Developed scripts to run custom config files using both bash and python
- Managed project tasks for myself and lead weekly meetings
- See third publication for results

Meta Probability and Uncertainty Team

Software Engineer Intern, Research Team

- Developed data perturbation training/evaluating/testing pipeline using python, pytorch
- Tested probabilistic models including Bayesian, Ensemble, and Dropout with LeNet-5 architecture
- Evaluated models on perturbed image data (Random Cropping, Rotation, Jittering)

Fiat Chrysler Automobiles

Software Engineer Intern

- Worked on amount of absentee workers prediction model across production plants
- Improved model performance by using Random Forests and XGBoost
- Cross referenced crew data across plants for more robust/generalized inference
- Significant increase in model accuracy for absentee worker prediction at all plants (2% increase, 5000 + employees)

Teaching/Involvement

- Member, AI Curriculum Review Committee
- Teaching Assistant, 10703 Deep Reinforcement Learning
- Teaching Assistant, 15-251, Great Ideas in Theoretical Computer Science

Summer 2021

Summer 2020

Fall 2024 Fall 2024 Spring 2023

• Head Teaching Assistant, 15-151/21-128 Mathematical Foundations for Computer Science	Fall 2023
• Teaching Assistant, High School AI Scholars Program @ CMU	Summer 2023
• Judge, WWP Hacks 2022 (HS hackathon, \$5000+ in prizes)	Spring 2023
• Head Teaching Assistant, 15-151/21-128 Mathematical Foundations for Computer Science	Fall 2022
• Teaching Assistant, 15-251, Great Ideas in Theoretical Computer Science	Spring 2022
• Head Teaching Assistant, 15-151/21-128 Mathematical Foundations for Computer Science	Fall 2021
• Teaching Assistant, 15-251, Great Ideas in Theoretical Computer Science	Spring 2021
\bullet Teaching Assistant, 15-151/21-128 Mathematical Foundations for Computer Science	Fall 2020
Projects	
Decision Transformer and Action Diffusion Implementation	Fall 2024
– Implemented Decision Transformer and Action Diffusion from scratch to be	
given in deep reinforcement learning class as a HW (see Teaching Fall 2024).	
– Implemented value guidance (similar to classifier guidance) from diffusion RL paper,	
improving diffusion performance	
 Able to match performance of expert trajectories on openAI gym environment collected us a trained PPO model 	ing
• Story Generation	Spring 2024
 Generate stories on team of 4 (new story captions and corresponding images) from a single initial story caption/image 	:
 Generate separate story captions for story and conditioning captions to be used for text-to model (novel idea) 	-image
 Finetuned Stable Diffusion for image generation and llava model for caption generation using LoRA (Low Rank Adapters) (project link) 	
 Improved performance over baselines with same task 	
• Solving Graph Problems with Diffusion — Use Graph Neural Networks and Diffusion to solve graph problems like MST	Spring 2024
(minimum spanning tree) quickly on team of 3	
 Using Kruskals algorithm with ordering from our predicted edges, we find less cycles when computing the MST (project link) 	
• Cozmo Depth Map	Spring 2023
 On team of 2, programmed a robot to use MiDaS, a relative monocular depth estimation model on camera input with 8 GB GPU 	1 0
 Given real world sparse depth from aruco markers, calculate optimal scaling factor for relative depth map 	
- Allow users to query any pixel on screen and output real world depth estimate (codebase)	(slides $)$
• MIT Battlecode!	
 Created Java software on team of 4, for AI bot to compete against other teams in month-le MIT lead tournament, competed for 3 years 	ong
 Leveraged distributed communication algorithms and pathfinding to increase bot's effective 	eness
 Implemented bit packing methods, Priority Queues and Stacks, and K-Means Clustering to improve performance 	
 Placed top 10 out of 250 teams internationally (2021, 2022, 2023), 1st out of all first-time teams(2021), \$2000+ in prize winnings (full overview) 	
$(2021), \psi 2000 + \text{ in prize withings (full overview)}$	

Coursework/Skills

Coursework: 11-777 Multimodal ML 10-708 Probabilistic Graphical Models 10-703Deep Reinforcement Learning 10-725 Convex Optimization 36-700 Statistics 15-485 Intro to Deep Learning 16-385 Computer Vision 10-315 Intro to Machine Learning 15-210 Parallel Algorithms 15-213 Computer Systems 21-484 Graph Theory 21-301 Combinatorics

Languages: Python Java C Javascript HTML/CSS LaTeX SQL Julia

Tools/Frameworks:

Pytorch NumPy SciPy Unix Command Line Git Sklearn Keras Pandas Jupyter Notebook regex Matplotlib OpenCV Slurm bash script