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1 Introduction1

Graph neural networks have been shown to be a powerful tool for aiding the solution of various2

combinatorial problems (3), including the traveling salesman problem (5), SAT (8), and maximum3

independent set (1). Specifically, we are using graph-based diffusion solvers to find approximate4

solutions graph based problems like minimum spanning tree (MST), Min cut, and single shortest5

path problem (SSPP). Utilizing graph neural networks to tackle graph algorithms is a task that6

has not garnered much attention, as the problems are not NP-hard and the small versions can be7

fully solved (15). In this work, we aim to aid these algorithms by using a GNN to give good8

heuristics/initializations for these problems. After training, we can use greedy algorithms with these9

heuristics to yeild solutions quickly.10

For all of our problems, we will consider a problem P as a function P : G → P(EG) that takes in a
graph and outputs a subset of the graphs edges. We parameterize the "cost" of this function by∑

e∈E

we +∞∗ I[invalid(E)]

where nivalid(E) returns 1 if our subset is invalid. Optionally,the graph may be conditioned on some11

set of vertices, yeilding problem P : G × P(VG) → P(EG). We will next discuss each problem12

specifically that we examine.13

Minimum Spanning Tree. In the minimum spanning tree problem, a graph G is our input, and the14

goal is to output a set of edges E ⊆ EG minimizing the cost of the sum of edges. Here the function15

invalid(E) is satisfied if the edges do not satisfy the tree property (i.e. |E| = |VG| − 1, and subgraph16

induced by E is both connected and acyclic)17

Min Cut. In the min cut problem, a graph G is our input, and the goal is to output a set of edges18

E ⊆ EG minimizing the total cost of edges. Here the function invalid(E) is satisfied if the subgraph19

G′ = (VG, EG \E) does not have at least 2 connected components. In other words, removing edges20

E does not disconnect the graph21

Single Shortest Path Problem. For the single shortest path problem, we plan to approximate22

Dijkstra’s and take in a graph G as well as a source s and target t as input (our extra conditioning),23

hoping to find a set E′
s,t minimizing the total cost of edges. Here our function invalid(E) is set to24

true if the edges do not form a single path from s to t25



2 Background26

In our midway report, we consider a more naive graph based algorithm to find the shortest path
between 2 points. Specifically, we consider a GNN where each nodes prediction value is a combination
of its neighbors values. Specifically, let F ∈ Rn×f be the current features of a graph with feature
dimension f and n nodes, A ∈ Rn×n be the adjacency matrix, and W ∈ Rf×f ′

be the weight matrix
with some input and output dimensions f and f ′. We perform:

F ′ = ReLU(AFW )

twice to get our final prediction. In other words, we are applying a fully connected linear layer to27

our features, weighted by the graph weights. Our loss function pushes the target node t to have final28

output value 1.29

Since each node is a strict combination of its neighbors, forcing the target node to have a final output30

value of 1 will in turn force its neighbors to have some output value greater than 0. Since we weight31

by edge weight (when multiplying with the adjacency matrix), this causes the nodes with smallest32

edge weight to have higher values.33

For this baseline, we consider graphs with 10-25 nodes, with each set of 2 nodes having an edge with34

probability 50%. If two nodes have an edge, then the weight of that edge is random from 1 to 10.35

After training, we start at node s and simply follow the path with highest node weight to get to t. First36

of all, notice that we are not directly optimizing for a shortest path objective, which could cause this37

method to fail for graphs with higher node count. Second, note that this method must be optimized38

for each individual start and end state s and t, as it has no way of training for an arbitrary start and39

end state.40

3 Related Works41

Graph Neural Networks. Graph neural networks (GNNs) are utilized to solve a wide array of tasks42

such as node classification, graph classification, recommendation systems, social networks, and more.43

They leverage the relational information encoded in the graph topology and node features to learn44

powerful representations that capture the underlying patterns and relationships within the data.45

In DIFUSCO, anisotropic graph neural networks are the choice of network to be used as diffusion46

solvers for combinatorial optimization. Anisotropic graph neural networks are designed to handle47

graphs with heterogeneous structures and edge types. Unlike traditional graph neural networks that48

treat all edges equally, AGNNs consider the directional and type-specific information present in49

the edges of the graph (11). By incorporating this information, AGNNs can capture the varying50

importance and semantics of different edges in the graph, enabling more nuanced and effective51

learning representations for complex tasks such as tackling graph-based learning tasks (13).52

AGNNs are useful for this particular task because they can produce embeddings for nodes and edges,53

as opposed to other GNNs that can only produce embeddings for nodes. AGNNs are used as the54

graph-based denoising network that takes in the noisy data, a set of nodes, and based on the problem55

instance we are trying to solve, will output the clean data (11). In general, graph-based denoising56

networks are good for tasks where not everything about the input graph is perfectly known and we57

aim to solve an optimization problem over properties of the graph itself in addition to the learnable58

GNN parameters (7; 14), making it suitable for approximating a variety of graph algorithms.59

Combinatorial Optimization. A substantial effort has been put into making instances more scalable60

for tasks with large data. For example, Fu et al. (5) trained a message passing algorithm that is61

executed on subgraphs to create possible TSP instances for parts of the network. Predictions on62

subgraphs are then aggregated to the full graph, where a RL policy is used to help make the final TSP63

prediction.64

When working with djikstra’s algorithm and prim’s algorithm, Yan et al. (15) encode the addition and65

minimum steps of the conventional algorithm using a neural network, and use these as subroutines in66

an algorithmic version of djikstra’s, as opposed to requiring a model to find the entire shortest path67

by working directly with a graph.68

The standard Bellman Ford algorithm has been used as inspiration along with GNNs for link prediction69

(16), a task in which the goal is to determine if any two nodes of a graph are linked. For any two70

2



Fully Connected KD Tree

Figure 1: Examples of 20 node fully connected graph (left), and 20 node KD-Tree (right), with K = 4.

Minimum Spanning Tree Visualization Shortest Path Visualization
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Minimum Cut

Figure 2: Examples of minimum spanning tree (left), single shortest path (middle), and minimum cut
(right) problems. For SSPP, we choose the bottom left and top right nodes to be the start and end
nodes respectively. Solutions to each problem are denoted by the red edges.

nodes u and v, they use a neurally network to encode each individual path Pi from u to v, then71

use a neural network to combine these embeddings for a final linkage representation. This task is72

slightly different to ours, as we hope to approximate the distance between u and v without the need73

for computing every path between the two.74

Finally, Song (11) leverages diffusion models (10) to iteratively denoise predictions for edge weights75

being in or out of a TSP path. They show that this process is highly parallelizable, and produces76

strong results even as graph size scales.77

The field of GNNs in general has made advances in scalable algorithms, using techniques like78

localized bidirectional propagations (4) and global aggregate feature prediction (6). Further, for tasks79

in which predictions on edges are required (for example predicting if edges are in a TSP, MST, or80

Path), classes of GNNs with edge and node embeddings have been proposed (2).81

4 Methods82

4.1 Dataset83

Since we are tackling the graph problems, a piece of data in our dataset is a set of nodes. We create84

our own training and test data, where a single datum(graph) consists of N randomly chosen nodes85

within a 1 by 1 square. When training, we consider a training set of 16384 graphs. For validation, we86

generate unseen validation/test sets of 1024 additional randomized examples. For all experiments, we87

set the number of nodes N = 50.88

After generating N randomly chosen node coordinates, we then add edges to create either a fully89

connected graph (for minimum spanning tree) or a K-Dimensional Tree (KD-Tree) (for minimum90

cut and single shortest path)1. Each edge has a weight equivalent to the euclidean distance between91

its two endpoints. Examples of each graph type are shown in Figure 1. Once we create the graph,92

we generate the labels corresponding the ground truth solution for the given problem, which are93

represented by a set of edges. Examples of ground truth solutions for each problem can be seen in94

Figure 2.95
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4.2 Ground Truth96

4.2.1 Minimum Spanning Tree97

The ground truth to solve the MST problem is Kruskal’s algorithm. First, Kruskal’s algorithm sorts98

all the edges of the graph by their weights in non-decreasing order. Then, starting with an empty99

spanning tree, it iteratively selects the shortest edge that does not create a cycle when added to the100

spanning tree. This process continues until all vertices are connected, resulting in the minimum101

spanning tree of the graph. Later, we introduce a modified Krukal’s algorithm, where we change the102

initial ordering of the edges and keep all else fixed.103

4.2.2 Single Shortest Path104

Dijkstra’s algorithm is the ground truth method for finding the single shortest path from the bottom-105

leftmost vertex to the top-rightmost vertex in a weighted graph with non-negative edge weights. It106

maintains a priority queue to greedily select the vertex with the smallest tentative distance from the107

source and updates the distances of its neighboring vertices if a shorter path is found. This process108

continues until all vertices have been visited, yielding the shortest paths from the source to all other109

vertices.110

4.2.3 Min Cut111

The ground truth algorithm to find the minimum cut of an undirected graph is the Stoer Wagner112

algorithm. It iteratively contracts the graph by merging vertices until only two remain. This process113

involves computing the minimum cut value for each contraction step and selecting the smallest cut114

found overall.115

4.3 Model Architecture116

We base our method off the DIFUSCO approach (11), by using a graph-based denoising diffusion117

model that learns to predict a binary {0, 1} valued vector label representing the solution for the given118

problem. The diffusion process gradually adds Bernoilli noise to this vector in the forward pass, and119

then does a network-based denoising process in the backward pass.120

More specifically, the forward process discrete diffusion is governed by current state xt ∈ [0, 1]N×2,121

which denotes the current edge distributions for N edges, and the transition matrix Qt, where122

Qt =

[
1− βt βt

βt 1− βt

]
, where βt is the amount of noise introduced at timestep t. The update is123

applied as q(xt|xt−1) := xt−1Qt. In the backward process, the denoising process is done through a124

denoising network, which is an anisotropic graph neural network (AGNN) that operates on both node125

and edge features. The denoising network takes in the coordinates of the nodes, an adjacency matrix,126

and the candidate solution vector. The network utilizes a message passing scheme to propagate the127

node and edge features between layers. For the node features, the network first aggregates information128

from neighboring edges using SUM pooling, and then applies batch normalization followed by a129

ReLU activation to help stabilize training. For the edge features, the network aggregates neighboring130

edge features, and then applies batch normalization followed by a 2 layer multi layer perceptron131

(MLP).132

After generating the final embeddings, the model applies a two-neural classification head to clean the133

output of the diffusion process. The model is trained to maximize the log-likelihood of the ground134

truth solution, and the loss can be expressed as:135

L(θ) = Es∈S [− log pθ(x
s∗)|s] (1)

where xs∗ denotes the ground truth (optimal) solution for training instance s.136

1We chose to use a KD-Tree as opposed to a fully connected graph for the minimum cut and single shortest
path problems to avoid trivial solutions.
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4.4 Training137

We train using the dataset described in Section 4.1 for 20 epochs with a batch size of 32. After138

training, we use the epoch with the best validation loss and test on the test set. Training takes139

approximately 20 minutes on a single Nvidia A5000 GPU with 24 Gb of memory.140

4.5 Inference and Decoding141

For denoising using our learned model, we consider DDIM (9), an approach that approximates142

the full backward process in a shorter number of steps, with tradeoffs between matching the true143

backward pass and fast computation. Our diffusion models pθ(·|s) produce the final output through144

Bernoulli sampling, and the final score pθ(x0 = 1|s) is a labelingg of each edge in the graph between145

0 and 1, where values closer to one indicate higher likelihood of being in the final solution. We146

also consider normalizing each heatmap score Aij by Aij/dij , where dij represents the euclidean147

distance between nodes i and j. We find that this helps in some instances, and provide more details in148

Section 6. Given both the unnormalized and normalized generated scores from our model, we then149

use greedy decoding strategies to create our solutions for each problem.150

For MST decoding, we first rank the edges in descending order by their normalized/unnormalized151

heatmap scores, and then run modified kruskals algorithm on the edges in this order, by iteratively152

adding edges that do not create cycles.153

For Single Shortest Path decoding, we run a Depth-First Search (DFS) starting from the starting154

(bottom left) node, each time traversing the neighboring edge with the highest normalized score.155

Once we reach the target (top right) node, we return the found path from the DFS.156

For Min Cut decoding, similar to MST, we first rank the edges in descending order by their heatmap157

score. Then, we iteratively add the edges with the highest score, each time checking if the collected158

edges disconnect the graph using a Breadth-First Search (BFS), and stop once the edges form a cut.159

4.5.1 Complexity Analysis160

Let N and E be the number of nodes and edges in a graph, respectively. Note that E ∈ O(N2) for a161

fully connected graph, and, and E ∈ O(KN) for a KD-Tree.162

The MST ground truth solution utilizes Kruskal’s algorithm, which is O(N2 logN2) for a fully163

connected graph. Our MST decoding process runs a version of kruskals on the heatmap scores, which164

is equivalently O(N2 logN2). However, as shown in the Results section, our decoding process165

encounters much less cycles compared to the ground truth solution, so our model’s computational166

complexity enjoys a much smaller constant factor.167

The SSPP ground truth solution is computed using Dijkstras algorithm, which is O(KN logN) for168

a KD-Tree. Our SSPP decoding process runs a DFS from the start to end node, which is O(KN).169

Thus, we see our SSPP model has a lower computational complexity than the ground truth.170

The Min Cut ground truth solution is computed using the Stoer Wagner algorithm, which is O(KN2+171

N2 logN) for a KD-Tree. Our Min Cut decoding process takes O(KN logKN) for sorting, and172

O(KNL) for looping through each edge and running BFS (where L is the expected number of edges173

found in the mincut), for an overall time complexity of O(KNL + KN logKN). Thus since L174

is expected to be significantly less than the total number of edges KN , our min cut model has an175

expected lower computational complexity than the ground truth.176

5 Results177

5.1 Minimum Spanning Tree178

In Figure 3, we display the state of training at the beginning, middle, and end of the denoising process179

that our denoising GNN goes through to find a solution to the MST problem on a graph with 50180

nodes. In Figure 4, we compare the number of cycles seen by our model and cost against the ground181

truth, Kruskal’s algorithm, and also plot a histogram of the difference between the number of cycles182

removed by our model and by Kruskal’s. The solid line represents the median value across the183
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Figure 3: Decoded trees from xt predictions at denoising steps at t = 999(left), 600(middle), 0(right)
for 50-node MST solution. We use our model to denoise a set of randomly initialized edge weight
probabilities, where the optimal solution is probability 1 for edges in the MST and 0 otherwise. Given
a set of denoised edge weights, we pick edges in order from highest to lowest weight, and add edges
that do not form a loop with the current set of edges. We use the DDIM(9) denoising scheduler with
50 steps during inference.

Figure 4: Plots of number of cycles and cost of our model for finding MST on graph with 50 nodes
during denoising process and histogram of the difference between number of cycles removed by our
model after completion of denoising steps and the ground truth (lower number of cycles is better).

samples at a particular denoising step and the ranges represent the lower and upper quartiles at that184

value.185

5.2 Single Shortest Path186

In Figure 5, we compare the number of nodes explored by our model and cost against the ground187

truth, Dijkstra’s algorithm, and also plot a histogram of the difference between the number of nodes188

explored by our model and by Dijkstra’s. Similar to MST, the solid lines represent median and ranges189

are the quartiles.190

Figure 5: Plots of number of nodes explored and cost of our model for finding SSPP on graph with 50
nodes during denoising process and histogram of the difference between number of nodes explored
by our model after completion of denoising steps and the ground truth (lower number of nodes is
better).
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Figure 6: Approximate minimum cut found from heatmap scores using greedy decoding process. The
approximate cut contains much more edges compared to the ground truth.

Figure 7: We ablate the different parts of our inference process for MST given some set of edge
weight likelihoods. In the first case (left), we simply pick the n - 1 edges with highest likelihood to be
in the MST from the model prediction. In the second case (middle), we normalize each likelihood by
the edge weight itself (in this case euclidean distance) and pick the n - 1 edges with highest likelihood.
In the final case (right), we consider Kruskal’s algorithm with an ordering equal to likelihoods of
edges normalized by their weights.

5.3 Min Cut191

In Figure 6, we display an example of an approximate minimum cut solution found by our model.192

6 Discussion and Analysis193

6.1 Minimum Spanning Tree194

In Figure 4, we plot denoising step vs number of cycles found by modified Kruskal’s algorithm (left)195

as well as denoising step vs MST cost (right). Here we are using the edge weights predicted from196

the denoised x0 prediction from each timestep, as opposed to the noisy edge weights xt. In the197

optimal case where all the MST edges are ordered perfectly as the top n − 1 edges, the cost will198

be equal to the MST cost, and the number of cycles will be 0. During our decoding process, the199

unnormalized edge weights decline to a very low number of cycles encountered, but stay fairly high200

in MST prediction. We surmise that this is because certain nodes in the graph give all edges high201

likelihood (see Figure 7, left), causing less cycles to be found. Notice that if the top n − 1 edges202

all have a shared node, then the tree is a star graph (which has high cost), and modified Kruskal’s203

algorithm find no cycles (since all edges are adjacent).204

In the normalized case, we see a similar pattern for intermediate edge weights, followed by an205

increase in cycle number back up to the gt number. We also see that our cost decreases to the ground206

truth cost. Interestingly, when plotting ground_truth_cycles_found - our_cycles_found (Figure 4), we207

find almost exclusively nonnegative values. This indicates that our method either performs the same208

as the ground truth w.r.t. number of cycles ( 75% of the time) or performs more optimally ( 25% of209

the time), decreasing the number of cylces found when using modified Kruskal’s.210

7



Figure 8: Examples of shortest paths found using normalized (left) and unnormalized (right) methods

6.2 Single Shortest Path211

For Single Shortest path, we find that normalizing does not make a huge difference in prediction as for212

MST. This may be due to the greedy nature of the algorithm, where only a few edge values are being213

compared against each other at any decoding step. In Figure 8, we notice that the paths generated by214

the normalized and unnormalized graphs look very similar, with the exception of a single, slightly215

longer deviation taken by the normalized decoding path at step 6 of the path given by our solution.216

Notice that the normalized path chooses a shorter edge over its longer counterpart, which intuitively217

makes sense as longer (and thus heavier) edges get downweighted by the normalization term 1/wij .218

Overall, we see that our decoded solution does get shorter over time, however it still performs around219

2x worse than the final solution. This could be due to the fact that a single deviation from the ground220

truth optimal path can cause large increase in the final decoded path, as we use a simple DFS with221

priority to higher weighted edges as a decoding mechanism. Instead of a DFS, we could instead use a222

small lookahead search to gain better performance, like Monte Carlo Tree Search (12). In fact, the223

original difusco paper (11) uses MCTS for better decoding of edge weights into TSP solutions, so it224

is a powerful tool that we leave to future work.225

6.3 Min Cut226

For Min Cut, we found that our decoding process struggled greatly to generate low-cost cut solutions227

from our generated heatmap. From an empirical analysis, we saw that if a node had K neighboring228

edges, the heatmap scores would tend to be high for K − 1 edges, and low for the Kth edge. As a229

result, our greedy decoding process would only partially remove the neighboring edges from a node230

before removing edges from other nodes, causing the number of edges found in the cut to be much231

higher than the ground truth. An example of a cut found my our approximation deoding process is232

shown in 6.233

7 Teammates and work division234

Maxwell: Coded, trained, and fine-tuned the diffusion models. Ran multiple experiments and235

ablation studies for each graph problem. Generated denoising step visualizations. Wrote the Intro-236

duction, Background, Combinatorial Optimization Related Works, Dataset, Training, and part of the237

Discussion and Analysis sections.238

Jocelyn: Generated visualizations, metrics, and evaluation for each graph problem, including compu-239

tational complexity cost comparisons between our architecture and ground truth solutions. Wrote240

the GNN Related Works, ground truth Models, and minimum spanning tree and single shortest path241

Results sections.242

David: Coded the data generation process and decoding process of the models. Generated ex-243

ample graph and solution visualizations. Wrote the Model Architecture, Inference and Decoding,244

Complexity Analysis, min cut results, and part of the Discussion and Analysis sections.245

8 Access to your Code246

Codebase link247
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